martes, 4 de noviembre de 2008







Herencia biológica
La herencia biológica es el proceso por el cual la prole de una célula u organismo adquiere o está predispuesta a adquirir, las característica de sus células u organismos progenitores. A través de la herencia, las variaciones adquiridas pueden irse acumulando.
Mecanismos de la herencia:
· Herencia genética, resultado de la replicación del ADN y de la división celular.
· Herencia epigenética resultado de, entre otras cosas, modificaciones en el ADN como el silencio o no expersión de un gen
El estudio de la herencia biológica se llama genética, que incluye también la epigenética
La herencia.
Todos los seres vivos, animales y vegetales, tienen la propiedad de transmitir a sus descendientes una serie de carcteres biológicos que les hacen semejantes a ellos.
A este conjunto de caracteres transmisibles a los descendientes es lo que se llama herencia biológica.
La genética es la ciencia que estudia los fenómenos de la herencia biológica y las leyes que los regulan.
Caracteres transmisibles por herencia.
Pueden ser de tres clases:
1° Caracteres específicos, es decir, propios de la especie biológica a la que
pertenece el individuo. Lo que hace que los hijos sean de la misma
especie que los padres.
2° Caracteres particulares, ya sea raciales, ya sea de un grupo más
restringuido de individuos, o bien exclusivos de los progenitores.
Son los más interesantes en genética.
3° Caracteres nuevos, es decir, caracteres que han aparecido
espontáneamente por primera vez en un individuo y que se transmiten
por herencia. A estas modificaciones se les llaman mutaciones.
Artificialmente se obtienen mutaciones que que pueden originar razas
nuevas.
Los factores hereditarios: Genes.
El único lazo material entre padres e hijos está constituido por los gametos. Son, por tanto, los gametos los portadores de la herencia.
Pero la célula-huevo que de ellos resulta es una célula ordinaria. Los caracteres que transporta están sólo en potencia o esbozo, y se llaman factores hereditarios o factores genéticos.
Los factores hereditarios se encuentran en los cromosomas y son unas partículas especiales submicroscópicas llamadas genes.
El conjunto de genes recibidos por un ser de sus progenitores se llama genotipo.
Y el conjunto de los caracteres que de ellos resultan y que se manifiestan en un individuo,fenotipo. Éste está muy influido por las circunstancias ambientales y de alimentación.
Especie y raza.
Cuando designamos a los seres vivos, designamos una especie, esto es, a un grupo de animales o plantas muy semejantes entre sí.
Una especie es un conjunto de seres parecidos entre sí, que provienen de un tronco común y que son capaces de reproducirse entre ellos indefinidamente.
En cambio, una raza es un conjunto de individuos de la misma especie pero que se diferencian por algunos caracteres poco importantes y que son transmisibles por herencia.
La hibridación.
La hibridación es la reproducción entre individuos de razas distintas. Los descendientes que resultan se llaman híbridos.
Se conocen las leyes que regulan la transmisión de los caracteres a los híbridos desde que Méndel enunció sus famosas leyes, completadas y ampliadas por los biólogos.
El procedimiento de hibridación, juntamente con el de selección (utilizar como reproductores tan solo los individuos que más se destacan por una cualidad),permiten mejorar los animales y las plantas.
Idea sobre el determinismo sexual.
Si los cromosomas de los gametos son los portadores de los caracteres biológicos que se transmiten a los descendientes, cabe pensar que tambien serán los causantes de uno de los caracteres más esenciales: el sexo.
En efecto, se ha comprobado con multitud de observaciones realizadas en muchos animales.
Además de los pares de cromosomas ordinarios (siempre tienen como número básico n y como número normal 2n), existen en las células un par de cromosomas especiales llamados heterocromosomas, distintos en las células masculinas y femeninas.
En el proceso de maduración de los gametos, hay una fase en que el número de cromosomas se reduce a la mitad (mitosis reductora). Entonces los dos heterocromosomas se van uno a cada célula. Por tanto, todos los óvulos tendrán un heterocromosoma X. En cambio las células masculinas llevarán el heterocromosoma X y otras el Y.
Al verificarse la fecundación podrán darse las combinaciones :
Óvulo con X + espermatozoide con X = XX (hembra)
Óvulo con X + espermatozoide con Y = XY (macho)
Hay las mismas posibilidades de que se produsca una pareja u otra. Por tanto habrá en las generaciones, aproximadamente, el mismo número de hembras que de machos.
LEYES DE MENDEL.
Son las leyes que regulan la transmisión de los caracteres biológicos por herencia. Fueron descubiertas por el agustino moravo Gregorio Méndel hacia 1.869. No se les dio importancia hasta principios del siglo XX, en que los botánicos Vries, Correns, etc, las pusieron de relieve.
Para estudiar las leyes de Méndel se cruzan individuos de dos razas que difieren en uno o en varios pares de caracteres. Cuando se cruzan forman la generación parental.
Los hijos se llaman híbridos y forman la primera generación filial: F1. Los hijos de estos forman la segunda generación filial: F2.
Si los padres solo difieren en un carácter, los hijos se denominan monohíbridos, si difieren en dos dihíbridos, etc.
P- PADRES aa AA razas puras u
homocigótico
2n
GAMETOS a a A A n
heterocigóticos
F1 Aa Aa Aa Aa o híbridos 2n
Ley de la uniformidad.
Si se cruzan razas puras, los híbridos de la primera generación filial son idénticos (tienen igual genotipo y fenotipo).
Carácter dominante es el que prevalece sobre el otro llamado recesivo.
Cuando los caracteres tienen la misma potencia presentan un fenotipo intermedio.
Ley de la disyunción de los genes antagónicos o alelomorfos.
Los genes o factores hereditarios antagónicos no se transmiten nunca juntos, sino separados.
Ley de la independencia de los
genes y su combinación al azar.
Cuando hay varios pares de caracteres, cada gen es independiente, y se disocia de su compañero al transmitirse por herencia, combinándose con los demás de todas las maneras posibles.
Anatomía humana


Anatomía del cuerpo humano, según Juan Valverde de Amusco, el sujeto aparece desollado sosteniendo en su mano su propia piel
La anatomía humana es la ciencia —de carácter práctico y morfológico principalmente— dedicada al estudio de las estructuras macroscópicas del cuerpo humano; dejando así el estudio de los tejidos a la histología y de las células a la citología y biología celular. La anatomía humana es un campo especial dentro de la anatomía general (animal).
Bajo una visión sistemática, el cuerpo humano —como los cuerpos de los animales—, está organizado en diferentes niveles según una jerarquía. Así, está compuesto de aparatos. Éstos los integran sistemas, que a su vez están compuestos por órganos, que están compuestos por tejidos, que están formados por células, que están formados por moléculas, etc. Otras visiones (funcional, morfogenética, clínica, etc.), bajo otros criterios, entienden el cuerpo humano de forma un poco diferente.
Reseña histórica
Históricamente se tiene constancia de que la anatomía era enseñada por Hipócrates en el siglo IV antes de Cristo. Se atribuye a Aristóteles el uso por primera vez de la palabra griega ἀνατομία (‘anatomía’) derivada del verbo ἀνατέμνειν anatémnein es decir cortes (ténnein) abiertos (ána) con el significado de diseccionar (separando las partes cortadas).
Bartolomeo Eustaquio(1500/1514-1574), también conocido con su nombre latino Eustachius, fue uno de los fundadores de la ciencia de la anatomía humana.
También estuvo Leonardo da Vinci con el modelo humano conocido como el Hombre de Vitruvio.
En el siglo XVI, Andreas Vesalius reformó y reivindicó el estudio de la anatomía para la medicina, corrigiendo los errores interpretativos de Galeno, quien disecaba monos y perros, con su magna opus De Humani Corporis Fabrica (Sobre las funciones del cuerpo humano).
Luego en el siglo XVII,William Harvey, médico inglés, descubrió la circulación sanguínea.
Ramas y divisiones
Algunas ramas o disciplinas como la osteología, la miología, la artrología, la angiología o la neuroanatomía cercan los límites de estudio del cuerpo humano de una manera más particular. Así, la miología realiza el estudio especifico de los músculos, su características y funciones; y la neuroanatomía realiza el estudio del sistema nervioso en forma extensiva.
La anatomía sistemática o descriptiva: esquematiza el estudio del cuerpo humano fraccionándolo en las mínimas partes constituyentes, y organizándolas por sistemas y aparatos.
La anatomía topográfica o regional: organiza el estudio del cuerpo por regiones siguiendo diversos criterios. La anatomía regional tiende a un arreglo más funcional y práctico, bajo un entendimiento más abarcativo de las relaciones entre las diferentes estructuras componentes. La anatomía de superficie es un área esencial en el estudio, pues los recuadros de anatomía de superficie ofrecen una información visible y táctil sobre las estructuras que se sitúan debajo de la piel.
La anatomía clínica: pone énfasis sobre el estudio de la estructura y la función en correlación a situaciones de índole médico-clínica (y otras ciencias de la salud). Aquí importan diferentes áreas como: la anatomía quirúrgica; la anatomía radiológica y ultrasonográfica en relación al diagnóstico por imágenes; la anatomía morfogenética que se relaciona con las enfermedades congénitas del desarrollo; la anatomopatología, etc.
La anatomía artística: trata de las cuestiones anatómicas que afectan directamente a la representación artística de la figura humana. Por ejemplo, los músculos que aparecen superficialmente y sus tensiones según las diferentes posturas y/o esfuerzos; las transformaciones anatómicas que se producen en función de la edad, de la "raza" (o mejor dicho clina o fisiotipo), de las enfermedades; las transformaciones anatómicas debidas al gesto y/o las emociones se estudian en una subdivision de la anatomía humana artística denominada fisiognomía o bien fisiognómica.
Hay otras modalidades: anatomía comparada, anatomía funcional, etc.
Sistemas y aparatos del cuerpo humano
Sistema: es un grupo de órganos asociados que concurren en una función general y están formados predominantemente por los mismos tipos de tejidos. Por ejemplo: el sistema esquelético, el sistema cardiovascular, el
sistema nervioso, etc.
Aparato: es un grupo de sistemas que desempeñan una función común y más amplia. Por ejemplo el aparato locomotor, integrado por los sistemas muscular, esquelético, articular y nervioso.
Aparato digestivo: procesado de la comida, boca, esófago, estómago, intestinos y glándulas anexas.
Sistema endocrino: comunicación dentro del cuerpo mediante hormonas.
Aparato excretor: eliminación de residuos del cuerpo mediante la orina.
Sistema inmunitario: defensa contra agentes causantes de enfermedades.
Sistema integumentario: piel, pelo y uñas.
Sistema muscular: movimiento del cuerpo.
Sistema nervioso: recogida, transferencia y procesado de información, por el cerebro y los nervios, en este interactuan los AINES
Aparato reproductor: los órganos sexuales.(Masculinos y Femeninos)
Aparato respiratorio: los órganos empleados para la respiración son los pulmones. dentro de los cuales podemos encontrar los Bronquiolos, cilius etc.
Sistema óseo: apoyo estructural y protección mediante huesos.
Sistema articular: formado por las articulaciones y ligamentos asociados que unen el sistema esquelético y permite los movimientos corporales.
Aparato locomotor: conjunto de los sistemas esquelético, articular y muscular. Estos sistemas coordinados por el sistema nervioso permiten la locomoción.
Sistema cardiovascular: formado por el corazón, arterias, venas y capilares
Sistema linfático: formado por los capilares, vasos y ganglios linfáticos, bazo, Timo y Médula Ósea.
Sistema circulatorio: conjunto de los sitemas cardiovascular y linfático.
Anatomía topográfica
Bajo un criterio topográfico, el cuerpo humano es estudiado por regiones, esquemáticamente (entre paréntesis los universalizados nombres en latín):
Cabeza (Caput)
Neurocráneo (Neurocranium)
Viscerocráneo (Viscerocranium)
Cuello (Colli)
Tronco (Truncus)
Espalda (Dorsum)
Tórax (Thorax)
Abdomen (Abdomen)
Pelvis (Pelvis)
Miembro superior (Membrum superius)
Cintura escapular (Cingulum membri superioris)
Brazo (Brachium)
Antebrazo (Antebrachium)
Mano (manus)
Miembro inferior (Membrum inferius)
Cintura pelviana (Cingulum membri inferioris)
Muslo (Fémur)
Pierna (Crus)
Pie (Pes)
Anatomía artística
El descubrimiento de la anatomía humana está íntimamente ligado a la anatomía artística. Se puede concretar más aún y afirmar que los conocimientos de la anatomía humana y la artística discurren paralelos a la historia del desnudo en el arte y en la vida cotidiana. Los griegos no tenían tanta necesidad de diseccionar cadáveres (pese a las vivisecciones de Herófilo de Calcedonia, quien trabajo en la helenística Alejandría en tiempos del Imperio Romano), para efectuar representaciones figurativas del cuerpo humano como tuvieron que hacer mil quinientos años después los científicos-artistas del Renacimiento. Ya que los antiguos griegos, desde niños, contemplaban los desnudos de sus jóvenes atletas y de sus heteras. Sin embargo no debemos exagerar este vínculo.
La representación artística tiene su propia trayectoria, independiente de la trayectoria de la ciencia, a pesar de las indiscutibles coincidencias que se encuentran, como en los estudios de Leonardo. El ejemplo del desnudo griego lo pone de manifiesto: el kouros era un modelo de representación artística arcaizante y algo hierática, pero no un modelo de representación anatómica. La representación anatómica del kouros estuvo idealizada o esquematizada durante doscientos años, desde el Periodo Arcaico (650 a. C.) hasta Fidias y Praxíteles (ca. 450 a. C.), y el período del clasicismo helenístico que luego se extendió a las artes etruscas y romanas; en estas dos artes llama la atención la búsqueda en ocasiones de un descarnado realismo; los bustos etruscos y romanos eran inicialmente esculturas en terracota o en bronce que obtenían de los moldes de mascarillas funerarias ya que el paradigma de esas culturas era suponer que se preservaba algo de la vida del difunto al representar del modo más fiel posible sus facciones.
Método anticonceptivo
Un método anticonceptivo es una metodología que impide o reduce la posibilidad de que ocurra la fecundación o el embarazo al mantener relaciones sexuales. Por lo general implica acciones, dispositivos o medicamentos en las que cada uno tiene su nivel de efectividad. También se le llama contracepción o anticoncepción, en el sentido de ser formas de control de la natalidad.
La historia del control de la natalidad se remonta al descubrimiento que la relación sexual está asociada al embarazo. Las formas más antiguas incluían el coitus interruptus y la combinación de hierbas con supuestas propiedades contraceptivas o abortivas. El registro más antiguo del control de la natalidad presenta instrucciones anticonceptivas en el Antiguo Egipto.
Tipos de métodos anticonceptivos
Métodos de barrera Preservativo. Tiene una versión femenina y una masculina
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma al útero.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro
Métodos químicos y hormonales Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol-9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la píldora anticonceptiva
Anticonceptivo subdérmico Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.
Anillo vaginal Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.
Píldora trifásica Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.
Píldora 0 estrógenos. Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.
Píldora del día después Método hormonal de uso ocasional. La anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas, sin embargo la sugerencia es que la mujer tome 2 píldoras en una sola toma inmediatamente.
·
También hay anticoncepción hormonal que suprime durante la regla.
Actualmente la anticoncepción hormonal masculina está en desarrollo.
Parches anticonceptivos.
Mediante anillos vaginales.
Método combinado
Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida (eg. Delfen). La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.
Dispositivo intrauterino (DIU)
Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado.

Métodos naturales
Artículo principal: Métodos anticonceptivos naturales
Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación del acto sexual a las fases fértiles o infértiles del ciclo menstrual en función de que se desee o no una concepción, sin el uso de fármacos, procedimientos mecánicos ni quirúrgicos.[1] Algunos métodos predictivos son aún enseñados con cierta preferencia en las escuelas ginecológicas, como el método de Ogino-Knauss o método del ciclo,[2] mientras que otras técnicas, tan ancestrales como el Coitus interruptus tienen hoy en día una fiabilidad que es similar a la de otros métodos no quirúrgicos.[3]
Otros métodos naturales están basados en la conciencia de la fertilidad, es decir, la mujer observa con atención y registra los signos de fertilidad en su cuerpo para determinar las fases fértiles o infértiles. Los síntomas específicos caen en tres categorías:[4] cambios en temperatura basal, en el moco cervical y la posición cervical. El registrar tanto la temperatura basal como otro signo primario, se conoce como el método sintotermal.[5] Otras metodologías incluyen el monitoreo de los niveles en orina de estrógeno y LH a lo largo del ciclo menstrual.
La Organización Mundial de la Salud clasifica los métodos modernos de planificación familiar natural como buenos o muy buenos, con valores de índice de Pearl menores de 1. La Sociedad Española de Ginecología y Obstetricia ha publicado un documento consenso sobre los métodos naturales de PFN.
Estos métodos de planificación familiar son apoyados y promovidos por la Iglesia Católica para la vivencia y el ejercicio de lo que esa institución denomina una paternidad responsable, como queda reflejado en la Encíclica Humanae Vitae. Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia.[6] [7] [8] En cuanto a los métodos modernos, el más eficaz es el sintotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.
Métodos simples
Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es altamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad.[9] La confiabilidad es superior al 95% en varios países estudiados.[10] Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia).
Métodos compuestos
Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional es que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).
Métodos anticonceptivos definitivos o irreversibles
Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de Falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomía no impide la eyaculación. Es un proceso reversible aunque con dificultades.
Métodos de emergencia
Píldora del día después. Tiene bastantes efectos secundarios.
El método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.
Los métodos abortivos como la píldora de mifepristona (RU-486) producen una reducción relativa del número de abortos en las estadísticas, pues trasladan los "macro-abortos" a "micro-abortos", es decir, a abortos del embrión por implantarse o recién implantado. El concepto de control de natalidad es más amplio pues incluye al aborto e incluso al infanticidio y no debe confundirse ni con el método anticonceptivo ni con el aborto.
Consideraciones éticas
Algunos métodos anticonceptivos, como el DIU, actúan también al impedir la anidación del preembrión (óvulo ya fecundado) no implantado en el endometrio materno. Es por ello que hay personas que los consideran como métodos anticonceptivos abortivos, y los rechazan, haciendo una distinción sobre los métodos anticonceptivos que consideran como no abortivos (ej. método combinado: preservativo + crema espermicida).
La Iglesia Católica y la contracepción
La doctrina contemporánea de la Iglesia católica en cuanto a la contracepción quedó expuesta en Humanae Vitae[2], la encíclica de Pablo VI de 1968. La contracepción artificial se considera un pecado grave, pero los métodos de planificación familiar natural, que abarcan formas modernas muy eficaces, son moralmente permisibles en ciertas circunstancias.

martes, 28 de octubre de 2008


Genética


ADN, base de la herencia genética
La genética (del término "Gen", que proviene de la palabra griega γένος y significa "raza, generación") es el campo de las ciencias biológicas que trata de comprender cómo la herencia biológica es transmitida de una generación a la siguiente, y cómo se efectúa el desarrollo de las características que controlan estos procesos.
Ciencia
La genética es una rama de las ciencias biológicas, cuyo objeto es el estudio de los patrones de herencia, del modo en que los rasgos y las características se transmiten de padres a hijos. Los genes se forman de segmentos de ADN (ácido desoxirribonucleico), la molécula que codifica la información genética en las células. El ADN controla la estructura, la función y el comportamiento de las células y puede crear copias casi o exactas de sí mismo.
La herencia y la variación constituyen la base de la Genética.
En la prehistoria, los seres humanos aplicaron sus intuiciones sobre los mecanismos de la herencia a la domesticación y mejora de plantas y animales. En la investigación moderna, la Genética proporciona herramientas importantes para la investigación de la función de genes particulares, como el análisis de interacciones genéticas. En los organismos, la información genética generalmente reside en los cromosomas, donde está almacenada en la secuencia de moléculas de ácido desoxirribonucleico (ADN).
Los genes contienen la información necesaria para determinar la secuencia de aminoácidos de las proteínas. Éstas, a su vez, desempeñan una función importante en la determinación del fenotipo final, o apariencia física, del organismo. En los organismos diploides, un alelo dominante en uno de los cromosomas homólogos enmascara la expresión de un alelo recesivo en el otro.
En la jerga de los genéticos, el verbo codificar se usa frecuentemente para significar que un gen contiene las instrucciones para sintetizar una proteína particular, como en la frase el gen codifica una proteína. Ahora sabemos que el concepto "un gen, una proteína" es simplista y que un mismo gen puede a veces dar lugar a múltiples productos, dependiendo de cómo se regula su transcripción y traducción.
La Genética determina buena parte (aunque no totalmente) de la apariencia de los organismos, incluyendo a los seres humanos. Las diferencias en el ambiente y otros factores aleatorios son también responsables en parte. Los gemelos idénticos (o monocigóticos), clones que resultan de la división del embrión, poseen el mismo ADN pero diferentes personalidades y huellas dactilares.
Cronología de descubrimientos notables
Artículo principal: Historia de la genética
Año
Acontecimiento
1865
Se publica el trabajo de Gregor Mendel
1900
Los botánicos Hugo de Vries, Carl Correns y Eric Von Tschermak redescubren el trabajo de Gregor Mendel
1903
Se descubre la implicación de los cromosomas en la herencia
1905
El biólogo británico William Bateson acuña el término "Genetics" en una carta a Adam Sedgwick
1910
Thomas Hunt Morgan demuestra que los genes residen en los cromosomas
1913
Alfred Sturtevant crea el primer mapa genético de un cromosoma
1918
Ronald Fisher publica On the correlation between relatives on the supposition of Mendelian inheritance —la síntesis moderna comienza.
1923
Los mapas genéticos demuestran la disposición lineal de los genes en los cromosomas
1928
Se denomina mutación a cualquier cambio en la secuencia nucleotídica de un gen, sea esta evidente o no en el fenotipo
1928
Fred Griffith descubre una molécula hereditaria transmisible entre bacterias (véase Experimento de Griffith)
1931
El entrecruzamiento es la causa de la recombinación
1941
Edward Lawrie Tatum y George Wells Beadle demuestran que los genes codifican proteínas; véase el dogma central de la Genética
1944
Oswald Theodore Avery, Colin McLeod y Maclyn McCarty demuestran que el ADN es el material genético (denominado entonces principio transformante)
1950
Erwin Chargaff demuestra que las proporciones de cada nucleótido siguen algunas reglas (por ejemplo, que la cantidad de adenina, A, tiende a ser igual a la cantidad de timina, T). Barbara McClintock descubre los transposones en el maíz
1952
El experimento de Hershey y Chase demuestra que la información genética de los fagos reside en el ADN
1953
James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice
1956
Jo Hin Tjio y Albert Levan establecen que, en la especie humana, el número de cromosomas es 46
1958
El experimento de Meselson y Stahl demuestra que la replicación del ADN es semiconservativa
1961
El código genético está organizado en tripletes
1964
Howard Temin demuestra, empleando virus de ARN, excepciones al dogma central de Watson
1970
Se descubren las enzimas de restricción en la bacteria Haemophilius influenzae, lo que permite a los científicos manipular el ADN
1977
Fred Sanger, Walter Gilbert, y Allan Maxam secuencian ADN por primera vez trabajando independientemente. El laboratorio de Sanger completa la secuencia del genoma del bacteriófago Φ-X174
1983
Kary Banks Mullis descubre la reacción en cadena de la polimerasa, que posibilita la amplificación del ADN
1989
Francis Collins y Lap-Chee Tsui secuencian un gen humano por primera vez. El gen codifica la proteína CFTR, cuyo defecto causa fibrosis quística
1990
Se funda el Proyecto Genoma Humano por parte del Departamento de Energía y los Institutos de la Salud de los Estados Unidos
1995
El genoma de Haemophilus influenzae es el primer genoma secuenciado de un organismo de vida libre
1996
Se da a conocer por primera vez la secuencia completa de un eucariota, la levadura Saccharomyces cerevisiae
1998
Se da a conocer por primera vez la secuencia completa de un eucariota pluricelular, el nematodo Caenorhabditis elegans
2001
El Proyecto Genoma Humano y Celera Genomics presentan el primer borrador de la secuencia del genoma humano
2003
(14 de abril) Se completa con éxito el Proyecto Genoma Humano con el 99% del genoma secuenciado con una precisión del 99,99%[1]
Subdivisiones de la genética
La genética se subdivide en varias ramas, como:
Clásica o mendeliana: Se preocupa del estudio de los cromosomas y los genes y de cómo se heredan de generación en generación.
Cuantitativa, que analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala
Molecular: Estudia el ADN, su composición y la manera en que se duplica. Asimismo, estudia la función de los genes desde el punto de vista molecular.
de Poblaciones y evolutiva: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
del desarrollo: Se preocupa de cómo los genes controlan el desarrollo de los organismos
Ingeniería genética
La ingeniería genética es la especialidad que utiliza tecnología de la manipulación y trasferencia del ADN de unos organismos a otros, permitiendo controlar algunas de sus propiedades genéticas. Mediante la ingeniería genética se pueden potenciar y eliminar cualidades de organismos en el laboratorio. Por ejemplo, se pueden corregir defectos genéticos (terapia génica), fabricar antibióticos en las glándulas mamarias de vacas de granja o clonar animales como la oveja Dolly. Algunas de las formas de controlar esto es mediante transfección (lisar células y usar material genético libre), conjugación (plásmidos) y transducción (uso de fagos o virus), entre otras formas. Además se puede ver la manera de regular esta expresión genética en los organismos (Operon)

martes, 21 de octubre de 2008

ADN

Biología del ADN
El ADN, también conocido como ácido deoxiribonucléico, es una molécula fundamental encontrada en todos los seres vivientes. Sirve como la base para la herencia, especificando que rasgos son transmitidos de los padres a los hijos a través de las generaciones. También contiene instrucciones para que las células de nuestro cuerpo realicen sus funciones específicas.
EstructuraEn los seres humanos, la mayordel ADN tiene la forma de hebras firmemente rizadas denominadas cromosomas, encontradas dentro del n? de la c鬵la. Hay 46 cromosomas en una c鬵la humana. Si se desenrolla cada cromosoma y se los coloca abiertos de punta a punta, formarᮠuna h鬩ce larga, de doble hebra que tiene unos 3 metros de largo ?todo en una c鬵la humana microsc󰩣a.
La h鬩ce del ADN luce como una escalera torcida. Los dos lados estᠣompuestos de las cuatro bases: adenina (A), timina (T), guanina (G), y citosina (C), y los escalones de la escalera representan cadenas de hidr󧥮o que conectan pares especcos de estas mol飵las juntas: A-T y G-C.
La disposici󮠤e estas mol飵las, denominada la secuencia de ADN, explica en detalle las instrucciones respecto a nuestras caractericas fcas y nuestras funciones corporales. Estas instrucciones se encuentran en unidades denominadas genes.

ADN

Biología del ADN
El ADN, también conocido como ácido deoxiribonucléico, es una molécula fundamental encontrada en todos los seres vivientes. Sirve como la base para la herencia, especificando que rasgos son transmitidos de los padres a los hijos a través de las generaciones. También contiene instrucciones para que las células de nuestro cuerpo realicen sus funciones específicas.
EstructuraEn los seres humanos, la mayordel ADN tiene la forma de hebras firmemente rizadas denominadas cromosomas, encontradas dentro del n? de la c鬵la. Hay 46 cromosomas en una c鬵la humana. Si se desenrolla cada cromosoma y se los coloca abiertos de punta a punta, formarᮠuna h鬩ce larga, de doble hebra que tiene unos 3 metros de largo ?todo en una c鬵la humana microsc󰩣a.
La h鬩ce del ADN luce como una escalera torcida. Los dos lados estᠣompuestos de las cuatro bases: adenina (A), timina (T), guanina (G), y citosina (C), y los escalones de la escalera representan cadenas de hidr󧥮o que conectan pares especcos de estas mol飵las juntas: A-T y G-C.
La disposici󮠤e estas mol飵las, denominada la secuencia de ADN, explica en detalle las instrucciones respecto a nuestras caractericas fcas y nuestras funciones corporales. Estas instrucciones se encuentran en unidades denominadas genes.

ARN











Síntesis de ARN: Transcripción
El proceso de síntesis de ARN o TRANSCRIPCIÓN, consiste en hacer una copia complementaria de un trozo de ADN. El ARN se diferencia estructuralmente del ADN en el azúcar, que es la ribosa y en una base, el uracilo, que reemplaza a la timina. Además el ARN es una cadena sencilla.1. En una primera etapa, una enzima, la ARN-polimerasa se asocia a una región del ADN,denominada promotor, la enzima pasa de una configuración cerrada a abierta, y desenrolla una vuelta de hélice, permitiendo la polimerización del ARN a partir de una de las hebras de ADN que se utiliza como patrón.
2. La ARN-polimerasa, se desplaza por la hebra patrón, insertando nucleótidos de ARN, siguiendo la complementariedad de bases, así p.e.Secuencia de ADN:
3'... TACGCT...5'Secuencia de ARNm:
5'...UAGCGA...3'
3. Cuando se ha copiado toda la hebra, al final del proceso , la cadena de ARN queda libre y el ADN se cierra de nuevo, por apareamiento de sus cadenas complementarias.
2.3.

De esta forma, las instrucciones genéticas copiadas o transcritas al ARN están listas para salir al citoplasma.
El ADN, por tanto, es la copia maestra de la información genética, que permanece en reserva dentro del núcleo. El ARN, en cambio, es la copia de trabajo de la información genética. Este ARN que lleva las instrucciones para la síntesis de proteínas se denomina ARN mensajero.